- komplexe Geometrie
- комплексная геометрия
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Komplexe Geometrie — Komplexe Mannigfaltigkeiten sind topologische Mannigfaltigkeiten, deren Kartenwechselhomöomorphismen sogar konform sind. Diese Objekte werden in der Differentialgeometrie und der Funktionentheorie untersucht. Ihre Definition ist analog zu der… … Deutsch Wikipedia
Komplexe Mannigfaltigkeit — Komplexe Mannigfaltigkeiten sind topologische Mannigfaltigkeiten, deren Kartenwechselhomöomorphismen sogar konform sind. Diese Objekte werden in der Differentialgeometrie und der Funktionentheorie untersucht. Ihre Definition ist analog zu der… … Deutsch Wikipedia
Komplexe Differentialform — Eine komplexe Differentialform ist ein mathematisches Objekt aus der komplexen Geometrie. Eine komplexe Differentialform verallgemeinert das Konzept der Differentialformen auf komplexe Mannigfaltigkeiten. Eine wichtige Rolle spielt dieses Kalkül… … Deutsch Wikipedia
Komplexe Ebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Komplexe Zahlen — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Komplexe Zahlenebene — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass auch Wurzeln negativer Zahlen berechnet werden können. Dies gelingt durch Einführung einer neuen Zahl i derart, dass i2 = − 1 ist. Diese Zahl i wird auch als… … Deutsch Wikipedia
Komplexe Zahl — ℂ Die komplexen Zahlen erweitern den Zahlenbereich der reellen Zahlen derart, dass die Gleichung x2 + 1 = 0 lösbar wird. Dies gelingt durch Einführung einer neuen Zahl i mit der Eigenschaft i2 = − 1. Diese Zahl i wird als imaginäre Einheit… … Deutsch Wikipedia
Gitter (Geometrie) — Ein Gitter in der Geometrie ist eine lückenlose und überlappungsfreie Partition eines Bereichs des Raumes durch eine Menge von Gitterzellen. Die Gitterzellen werden definiert durch eine Menge von Gitterpunkten, die untereinander durch eine Menge… … Deutsch Wikipedia
Kreis (Geometrie) — Leonardo da Vincis: Der vitruvianische Mensch Der Mensch im Mittelpunkt eines Kreises und eines Quadrates. Der Nabel des Menschen ist der Mittelpunkt des Kreises. Der Begriff Kreis gehört zu den wichtigsten Begriffen der euklidischen Geometrie.… … Deutsch Wikipedia
Hyperbolische Geometrie — Modell einer Parkettierung einer Ebene mit Quadraten. An den Ecken treffen dabei mehr als vier zusammen (je nach Größe, hier fünf). Die hyperbolische Geometrie als Beispiel für eine nichteuklidische Geometrie erhält man, wenn man anstelle des… … Deutsch Wikipedia
Fraktale Geometrie — Berühmtes Fraktal: die Mandelbrot Menge (sogenanntes „Apfelmännchen“) Fraktal ist ein von Benoît Mandelbrot (1975) geprägter Begriff (lat. fractus: gebrochen, von frangere: brechen, in Stücke zerbrechen), der natürliche oder künstliche Gebilde… … Deutsch Wikipedia